Parametric inference for discretely sampled stochastic differential equations

نویسندگان

  • Michael Sørensen
  • M. Sørensen
چکیده

A review is given of parametric estimation methods for discretely sampled multivariate diffusion processes. The main focus is on estimating functions and asymptotic results. Maximum likelihood estimation is briefly considered, but the emphasis is on computationally less demanding martingale estimating functions. Particular attention is given to explicit estimating functions. Results on both fixed frequency and high frequency asymptotics are given. When choosing among the many estimators available, guidance is provided by simple criteria for high frequency efficiency and rate optimality that are presented in the framework of approximate martingale estimating functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DYNSTOCH 2013 University of Copenhagen April 17 - 19

s (Talks) 5 Adeline Samson. PARAMETER ESTIMATION IN THE STOCHASTIC MORRIS-LECAR NEURONAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Alexander Schnurr. AN ORDINAL PATTERN APPROACH TO DETECT AND TO MODEL DEPENDENCE STRUCTURES BETWEEN FINANCIAL TIME SERIES . . . . . . . . . . . . 7 Benedikt Funke. ADAPTIVE NADARAYA-WATSON LIKE ESTIMATORS FOR THE ESTIMATION ...

متن کامل

Nonparametric inference of discretely sampled stable Lévy processes

We study nonparametric inference of stochastic models driven by stable Lévy processes. We introduce a nonparametric estimator of the stable index that achieves the parametric √ n rate of convergence. For the volatility function, due to the heavy-tailedness, the classical least-squares method is not applicable. We then propose a nonparametric least-absolute-deviation or median-quantile estimator...

متن کامل

Estimating Functions for Discretely Sampled Diffusion-Type Models

Estimating functions provide a general framework for finding estimators and studying their properties in many different kinds of statistical models, including stochastic process models. An estimating function is a function of the data as well as of the parameter to be estimated. An estimator is obtained by equating the estimating function to zero and solving the resulting estimating equation wi...

متن کامل

Self-Similar Processes, Fractional Brownian Motion and Statistical Inference

Self-similar stochastic processes are used for stochastic modeling whenever it is expected that long range dependence may be present in the phenomenon under consideration. After discusing some basic concepts of self-similar processes and fractional Brownian motion, we review some recent work on parametric and nonparametric inference for estimation of parameters for linear systems of stochastic ...

متن کامل

A Multiresolution Method for Parameter Estimation of Diffusion Processes.

Diffusion process models are widely used in science, engineering and finance. Most diffusion processes are described by stochastic differential equations in continuous time. In practice, however, data is typically only observed at discrete time points. Except for a few very special cases, no analytic form exists for the likelihood of such discretely observed data. For this reason, parametric in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008